Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,4-Bis(4-chlorobenzoyl)piperazine

Hui-Min Jin, Pei-Fan Li,* Cai-Yun Li and Bin Liu

Department of Pharmaceutical, Tianjin Medical College, Tianjin 300222, People's Republic of China

Correspondence e-mail: pflitmc@yahoo.com.cn

Received 24 July 2007; accepted 30 July 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.132; data-to-parameter ratio = 16.0.

The title compound, C₁₈H₁₆Cl₂N₂O₂, crystallizes with two half-molecules in the asymmetric unit; each molecule lies on an inversion centre. The piperazine ring adopts a chair conformation and the two chlorobenzene rings in each molecule are parallel to each other due to symmetry. The crystal packing is stabilized by $C-H\cdots O$ and $C-H\cdots \pi$ interactions.

Related literature

For related literature, see: Pollard & Gray (1953).

1704.6 (5) Å³

Experimental

Crystal data

$C_{18}H_{16}Cl_2N_2O_2$	<i>b</i> = 11.413 (2) Å
$M_r = 363.23$	c = 12.653 (2) Å
Monoclinic, $P2_1/n$	$\beta = 96.959 \ (3)^{\circ}$
a = 11.892 (2) Å	V = 1704.6 (5) Å

```
Z = 4
Mo K\alpha radiation
\mu = 0.39 \text{ mm}^{-1}
```

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.940, T_{\max} = 0.954$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.132$ S = 1.003473 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O1^{i}$	0.93	2.42	3.350 (3)	173
$C11-H11\cdots O2^{ii}$	0.93	2.34	3.265 (3)	170
$C18-H18B\cdots Cg1$	0.97	2.91	3.812 (3)	155
	. 1 . 1	. 1	. 1 . 1	

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Tianjin (No. 003601711).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2456).

References

- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Pollard, C. B. & Gray, B. S. (1953). J. Am. Chem. Soc. 75, 491-491.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

T = 294 (2) K

 $R_{\rm int} = 0.044$

217 parameters

 $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min}$ = -0.22 e Å⁻³

 $0.16 \times 0.14 \times 0.12 \text{ mm}$

9538 measured reflections

3473 independent reflections

1795 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

supplementary materials

Acta Cryst. (2007). E63, o3689 [doi:10.1107/S1600536807037300]

1,4-Bis(4-chlorobenzoyl)piperazine

H.-M. Jin, P.-F. Li, C.-Y. Li and B. Liu

Comment

Some amides of piperazines have been reported to exhibit marked activity in inhibiting growth of tubercle bacillus in serum (Pollard & Gray, 1953).

The title compound, C₁₈H₁₆Cl₂N₂O₂, crystallizes with two half molecules in the asymmetric unit (Figs. 1 and 2).

The piperazine rings adopt a chair-conformation and the two chlorobenzene rings are parallel to each due to symmetry.

In the crystal of (I), weak C—H···O interactions (Table 1) and a C—H··· π -interaction (C18···*Cg*1 = 3.812 (3) Å, C18—H18B···*Cg*1 = 155°) stabilize the structure (*Cg*1 is the centroid of the C1–C6 ring).

Experimental

A solution of 4-chlorobenzoyl chloride in CH_2Cl_2 was added dropwise to a suspension of 1,4-piperazine in CH_2Cl_2 at room temperature with stirring. The reaction mixture continued stirring overnight. The white solid was obtained by recrystallization from methanol. Colourless blocks of (I) were grown by natural evaporation of a methanolic solution.

Refinement

All H atoms were positioned geometrically and refined as riding atoms. The C—H distance for CH group is 0.93 Å and that CH₂ group 0.97 Å both with the constraint of $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of molecule one of the title compound with the atom-numbering scheme and 30% probability displacement ellipsoids [symmetry code: -x,-y + 1,-z + 1].

Fig. 2. The molecular structure of molecule two of the title compound with the atom-numbering scheme and 30% probability displacement ellipsoids [symmetry code: -x + 1, -y + 1, -z + 1, -z + 1, -y + 1, -z + 1, -z

1,4-Bis(4-chlorobenzoyl)piperazine

Crystal data	
$C_{18}H_{16}Cl_2N_2O_2$	$F_{000} = 752$
$M_r = 363.23$	$D_{\rm x} = 1.415 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation

Hall symbol: -P 2yn a = 11.892 (2) Å b = 11.413 (2) Å c = 12.653 (2) Å $\beta = 96.959$ (3)° V = 1704.6 (5) Å³ Z = 4

Data collection

Cell parameters from 1786 reflections $\theta = 2.5-26.2^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 294 (2) K Block, colourless $0.16 \times 0.14 \times 0.12 \text{ mm}$

 $\lambda = 0.71073 \text{ Å}$

Bruker SMART 1K CCD area-detector diffractometer	3473 independent reflections
Radiation source: fine-focus sealed tube	1795 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
T = 294(2) K	$\theta_{max} = 26.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.940, \ T_{\max} = 0.954$	$k = -7 \rightarrow 14$
9538 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_o^2) + (0.0605P)^2 + 0.0445P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} = 0.002$
3473 reflections	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
217 parameters	$\Delta \rho_{\rm min} = -0.21 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	0.07297 (8)	1.14374 (6)	0.33438 (7)	0.0734 (3)
Cl2	0.67186 (8)	1.15311 (6)	0.41373 (7)	0.0755 (3)
01	0.10101 (17)	0.56724 (16)	0.25514 (15)	0.0608 (6)
O2	0.73471 (16)	0.58451 (15)	0.37660 (16)	0.0604 (6)
N1	0.05304 (18)	0.55966 (16)	0.42159 (16)	0.0431 (6)
N2	0.56644 (18)	0.56438 (18)	0.43733 (19)	0.0517 (6)
C1	0.1649 (2)	0.8111 (2)	0.30465 (19)	0.0445 (6)
H1	0.2263	0.7707	0.2835	0.053*
C2	0.1644 (2)	0.9320 (2)	0.3036 (2)	0.0485 (7)
H2	0.2255	0.9731	0.2825	0.058*
C3	0.0730 (2)	0.9914 (2)	0.3340 (2)	0.0466 (7)
C4	-0.0192 (2)	0.9316 (2)	0.3633 (2)	0.0524 (7)
H4	-0.0816	0.9725	0.3819	0.063*
C5	-0.0182 (2)	0.8109 (2)	0.3649 (2)	0.0462 (7)
Н5	-0.0803	0.7705	0.3848	0.055*
C6	0.0741 (2)	0.7489 (2)	0.33721 (18)	0.0393 (6)
C7	0.0774 (2)	0.6181 (2)	0.3351 (2)	0.0407 (6)
C8	0.0563 (2)	0.6076 (2)	0.52951 (19)	0.0446 (7)
H8A	0.0580	0.6925	0.5264	0.054*
H8B	0.1248	0.5815	0.5725	0.054*
C9	0.0460 (2)	0.4316 (2)	0.4195 (2)	0.0459 (7)
H9A	0.1142	0.3984	0.4578	0.055*
H9B	0.0398	0.4041	0.3464	0.055*
C10	0.6690 (2)	0.8217 (2)	0.31981 (19)	0.0444 (7)
H10	0.6819	0.7807	0.2589	0.053*
C11	0.6757 (2)	0.9420 (2)	0.3207 (2)	0.0463 (7)
H11	0.6916	0.9825	0.2604	0.056*
C12	0.6586 (2)	1.0017 (2)	0.4119 (2)	0.0443 (6)
C13	0.6332 (2)	0.9435 (2)	0.5015 (2)	0.0468 (7)
H13	0.6215	0.9849	0.5625	0.056*
C14	0.6253 (2)	0.8229 (2)	0.4990 (2)	0.0450 (7)
H14	0.6077	0.7830	0.5589	0.054*
C15	0.64333 (19)	0.7606 (2)	0.40892 (19)	0.0386 (6)
C16	0.6512 (2)	0.6301 (2)	0.4060 (2)	0.0423 (7)
C17	0.4532 (2)	0.6053 (2)	0.4531 (2)	0.0516 (7)
H17A	0.3984	0.5761	0.3962	0.062*
H17B	0.4512	0.6902	0.4510	0.062*
C18	0.5771 (2)	0.4364 (2)	0.4426 (2)	0.0574 (8)
H18A	0.6542	0.4136	0.4347	0.069*
H18B	0.5270	0.4009	0.3852	0.069*
Atomic displacement	nt parameters (\AA^2)			

Fractional atomic co	ordinates and isotropic o	r equivalent isotropic d	displacement parameters	$(Å^2)$
1 i actional atomic co	si aniales ana ison opie of	equivalent ison opie	anspiacement par amerers	(11)

11	22	22	12	12	22
U^{11}	U^{22}	U^{ss}	U^{12}	U^{13}	U^{23}

supplementary materials

Cl1	0.1044 (7)	0.0389 (4)	0.0786 (6)	-0.0003 (4)	0.0184 (5)	0.0003 (4)
C12	0.1046 (7)	0.0373 (4)	0.0892 (6)	-0.0095 (4)	0.0309 (5)	-0.0060 (4)
01	0.0898 (15)	0.0487 (12)	0.0508 (13)	0.0040 (10)	0.0366 (11)	-0.0049 (9)
02	0.0639 (13)	0.0467 (12)	0.0776 (14)	0.0110 (10)	0.0362 (11)	0.0041 (10)
N1	0.0661 (15)	0.0292 (11)	0.0363 (13)	0.0006 (10)	0.0153 (11)	-0.0010 (9)
N2	0.0502 (14)	0.0316 (12)	0.0789 (17)	0.0098 (10)	0.0300 (13)	0.0082 (11)
C1	0.0428 (16)	0.0472 (16)	0.0458 (16)	0.0024 (13)	0.0150 (13)	0.0029 (12)
C2	0.0487 (17)	0.0471 (17)	0.0503 (17)	-0.0051 (14)	0.0082 (14)	0.0069 (13)
C3	0.0599 (18)	0.0360 (15)	0.0440 (17)	-0.0011 (13)	0.0068 (14)	0.0022 (12)
C4	0.0542 (19)	0.0491 (17)	0.0563 (19)	0.0103 (14)	0.0161 (15)	0.0021 (14)
C5	0.0457 (16)	0.0434 (16)	0.0525 (17)	0.0016 (13)	0.0183 (13)	0.0040 (13)
C6	0.0426 (16)	0.0412 (15)	0.0351 (14)	0.0023 (12)	0.0087 (12)	0.0035 (11)
C7	0.0455 (16)	0.0395 (15)	0.0393 (16)	0.0025 (12)	0.0138 (13)	0.0011 (12)
C8	0.0654 (18)	0.0331 (14)	0.0362 (15)	0.0029 (13)	0.0095 (13)	-0.0031 (11)
C9	0.0659 (19)	0.0315 (14)	0.0422 (16)	0.0060 (13)	0.0150 (14)	-0.0033 (11)
C10	0.0545 (17)	0.0417 (15)	0.0396 (16)	-0.0018 (13)	0.0159 (13)	-0.0027 (12)
C11	0.0534 (17)	0.0451 (16)	0.0418 (17)	-0.0037 (13)	0.0119 (13)	0.0066 (13)
C12	0.0466 (16)	0.0359 (15)	0.0512 (17)	-0.0031 (12)	0.0098 (13)	-0.0028 (13)
C13	0.0536 (17)	0.0469 (17)	0.0417 (17)	0.0013 (13)	0.0128 (13)	-0.0107 (13)
C14	0.0517 (17)	0.0486 (16)	0.0370 (15)	0.0011 (13)	0.0140 (13)	0.0057 (12)
C15	0.0391 (15)	0.0375 (14)	0.0403 (15)	0.0010 (12)	0.0090 (12)	0.0013 (12)
C16	0.0474 (17)	0.0384 (16)	0.0441 (16)	0.0066 (13)	0.0176 (13)	0.0047 (12)
C17	0.0524 (18)	0.0352 (15)	0.070 (2)	0.0110 (13)	0.0181 (15)	0.0019 (14)
C18	0.0639 (19)	0.0373 (16)	0.076 (2)	0.0132 (14)	0.0274 (16)	0.0037 (14)

Geometric parameters (Å, °)

Cl1—C3	1.739 (3)	C8—H8A	0.9700
Cl2—C12	1.735 (3)	C8—H8B	0.9700
O1—C7	1.228 (3)	C9—C8 ⁱ	1.513 (3)
O2—C16	1.219 (3)	С9—Н9А	0.9700
N1—C7	1.343 (3)	С9—Н9В	0.9700
N1—C9	1.464 (3)	C10-C11	1.376 (3)
N1—C8	1.467 (3)	C10—C15	1.391 (3)
N2—C16	1.354 (3)	C10—H10	0.9300
N2—C17	1.461 (3)	C11—C12	1.377 (3)
N2—C18	1.467 (3)	C11—H11	0.9300
C1—C2	1.380 (3)	C12—C13	1.378 (3)
C1—C6	1.395 (3)	C13—C14	1.380 (3)
C1—H1	0.9300	С13—Н13	0.9300
C2—C3	1.375 (4)	C14—C15	1.382 (3)
С2—Н2	0.9300	C14—H14	0.9300
C3—C4	1.380 (4)	C15—C16	1.492 (3)
C4—C5	1.378 (3)	C17—C18 ⁱⁱ	1.488 (4)
C4—H4	0.9300	C17—H17A	0.9700
C5—C6	1.387 (3)	С17—Н17В	0.9700
С5—Н5	0.9300	C18—C17 ⁱⁱ	1.488 (4)
C6—C7	1.494 (3)	C18—H18A	0.9700

C8—C9 ⁱ	1.513 (3)	C18—H18B	0.9700
C7—N1—C9	119.9 (2)	N1—C9—H9B	109.8
C7—N1—C8	126.1 (2)	C8 ⁱ —C9—H9B	109.8
C9—N1—C8	112.61 (19)	Н9А—С9—Н9В	108.2
C16—N2—C17	126.4 (2)	C11—C10—C15	120.8 (2)
C16—N2—C18	120.1 (2)	C11—C10—H10	119.6
C17—N2—C18	112.8 (2)	C15-C10-H10	119.6
C2—C1—C6	120.6 (2)	C10-C11-C12	119.1 (2)
C2—C1—H1	119.7	C10-C11-H11	120.5
C6—C1—H1	119.7	C12—C11—H11	120.5
C3—C2—C1	119.5 (2)	C11—C12—C13	121.4 (2)
С3—С2—Н2	120.3	C11—C12—Cl2	118.8 (2)
C1—C2—H2	120.2	C13—C12—Cl2	119.8 (2)
C2—C3—C4	120.9 (2)	C12—C13—C14	118.9 (2)
C2—C3—Cl1	119.6 (2)	С12—С13—Н13	120.6
C4—C3—Cl1	119.5 (2)	C14—C13—H13	120.6
C5—C4—C3	119.5 (3)	C13—C14—C15	121.0 (2)
С5—С4—Н4	120.3	C13—C14—H14	119.5
C3—C4—H4	120.3	C15—C14—H14	119.5
C4—C5—C6	120.8 (2)	C14—C15—C10	118.8 (2)
C4—C5—H5	119.6	C14—C15—C16	123.4 (2)
C6—C5—H5	119.6	C10—C15—C16	117.4 (2)
C5—C6—C1	118.7 (2)	O2—C16—N2	121.1 (2)
$C_{5} - C_{6} - C_{7}$	122.5 (2)	02-016-015	119.3 (2)
C1C6C/	118.7 (2)	N2	119.6 (2)
01—C7—N1	122.0 (2)	$N2-C17-C18^{11}$	110.2 (2)
O1—C7—C6	119.8 (2)	N2—C17—H17A	109.6
N1—C7—C6	118.2 (2)	C18 ⁱⁱ —C17—H17A	109.6
N1—C8—C9 ⁱ	110.8 (2)	N2—C17—H17B	109.6
N1—C8—H8A	109.5	C18 ⁱⁱ —C17—H17B	109.6
C9 ⁱ —C8—H8A	109.5	H17A—C17—H17B	108.1
N1—C8—H8B	109.5	N2—C18—C17 ⁱⁱ	109.3 (2)
C9 ⁱ —C8—H8B	109.5	N2—C18—H18A	109.8
H8A—C8—H8B	108.1	C17 ⁱⁱ —C18—H18A	109.8
N1	109.5 (2)	N2	109.8
N1—C9—H9A	109.8	C17 ⁱⁱ —C18—H18B	109.8
C8 ⁱ —C9—H9A	109.8	H18A—C18—H18B	108.3
C6—C1—C2—C3	-0.6 (4)	C15-C10-C11-C12	1.1 (4)
C1—C2—C3—C4	-1.4 (4)	C10-C11-C12-C13	-1.0 (4)
C1—C2—C3—Cl1	179.15 (19)	C10-C11-C12-Cl2	177.85 (19)
C2—C3—C4—C5	1.7 (4)	C11—C12—C13—C14	0.2 (4)
Cl1—C3—C4—C5	-178.8 (2)	Cl2—C12—C13—C14	-178.64 (19)
C3—C4—C5—C6	-0.1 (4)	C12—C13—C14—C15	0.5 (4)
C4—C5—C6—C1	-1.9 (4)	C13—C14—C15—C10	-0.4 (4)
C4—C5—C6—C7	-178.3 (2)	C13—C14—C15—C16	171.6 (2)
C2—C1—C6—C5	2.2 (4)	C11—C10—C15—C14	-0.5 (4)

supplementary materials

C2-C1-C6-C7	178.8 (2)	C11-C10-C15-C16	-172.9 (2)
C9—N1—C7—O1	-4.5 (4)	C17—N2—C16—O2	-166.5 (3)
C8—N1—C7—O1	160.9 (3)	C18—N2—C16—O2	3.8 (4)
C9—N1—C7—C6	174.9 (2)	C17—N2—C16—C15	14.5 (4)
C8—N1—C7—C6	-19.6 (4)	C18—N2—C16—C15	-175.3 (2)
C5—C6—C7—O1	127.9 (3)	C14—C15—C16—O2	-124.8 (3)
C1—C6—C7—O1	-48.6 (3)	C10-C15-C16-O2	47.3 (3)
C5—C6—C7—N1	-51.5 (3)	C14—C15—C16—N2	54.3 (4)
C1—C6—C7—N1	132.0 (2)	C10-C15-C16-N2	-133.6 (3)
C7—N1—C8—C9 ⁱ	136.7 (2)	C16—N2—C17—C18 ⁱⁱ	-131.6 (3)
C9—N1—C8—C9 ⁱ	-57.0 (3)	C18—N2—C17—C18 ⁱⁱ	57.6 (3)
C7—N1—C9—C8 ⁱ	-136.4 (2)	C16—N2—C18—C17 ⁱⁱ	131.4 (3)
C8—N1—C9—C8 ⁱ	56.2 (3)	C17—N2—C18—C17 ⁱⁱ	-57.1 (3)
Symmetry codes: (i) $-x, -y+1, -z+1$; (ii)	i) $-x+1$, $-y+1$, $-z+1$.		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C2—H2···O1 ⁱⁱⁱ	0.93	2.42	3.350 (3)	173
C11—H11····O2 ^{iv}	0.93	2.34	3.265 (3)	170
C18—H18B···Cg1	0.97	Missing	3.812 (3)	155
Symmetry codes: (iii) $-x+1/2$, $y+1/2$, $-z+1/2$; (iv) $-x+3/2$, $y+1/2$, $-z+1/2$.				

Fig. 1

